A Hebbian learning rule mediates asymmetric plasticity in aligning sensory representations.

نویسندگان

  • Ilana B Witten
  • Eric I Knudsen
  • Haim Sompolinsky
چکیده

In the brain, mutual spatial alignment across different sensory representations can be shaped and maintained through plasticity. Here, we use a Hebbian model to account for the synaptic plasticity that results from a displacement of the space representation for one input channel relative to that of another, when the synapses from both channels are equally plastic. Surprisingly, although the synaptic weights for the two channels obeyed the same Hebbian learning rule, the amount of plasticity exhibited by the respective channels was highly asymmetric and depended on the relative strength and width of the receptive fields (RFs): the channel with the weaker or broader RFs always exhibited most or all of the plasticity. A fundamental difference between our Hebbian model and most previous models is that in our model synaptic weights were normalized separately for each input channel, ensuring that the circuit would respond to both sensory inputs. The model produced three distinct regimes of plasticity dynamics (winner-take-all, mixed-shift, and no-shift), with the transition between the regimes depending on the size of the spatial displacement and the degree of correlation between the sensory channels. In agreement with experimental observations, plasticity was enhanced by the accumulation of incremental adaptive adjustments to a sequence of small displacements. These same principles would apply not only to the maintenance of spatial registry across input channels, but also to the experience-dependent emergence of aligned representations in developing circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model Analysis of Temporally Asymmetric Hebbian Learning

Among a lot of models for learning in neural networks, Hebbian and anti-Hebbian learnings might be the most familiar ones. Although there are many variants, the most typical paradigms are such that when preand post-synaptic activations (firing) occur at the same time, synaptic efficacy is increased (Hebbian) or decreased (anti-Hebbian). According recent neurophysiological observations, however,...

متن کامل

Anti-Hebbian Spike-Timing-Dependent Plasticity and Adaptive Sensory Processing

Adaptive sensory processing influences the central nervous system's interpretation of incoming sensory information. One of the functions of this adaptive sensory processing is to allow the nervous system to ignore predictable sensory information so that it may focus on important novel information needed to improve performance of specific tasks. The mechanism of spike-timing-dependent plasticity...

متن کامل

Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation

The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common pri...

متن کامل

Nonlinear Hebbian learning

The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common pri...

متن کامل

Symbol emergence by combining a reinforcement learning schema model with asymmetric synaptic plasticity

A novel integrative learning architecture, RLSM with a STDP network is described. This architecture models symbol emergence in an autonomous agent engaged in reinforcement learning tasks. The architecture consists of two constitutional learning architectures: a reinforcement learning schema model (RLSM) and a spike timing-dependent plasticity (STDP) network. RLSM is an incremental modular reinf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2008